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APPENDIX 2 

Atoms in the 6D'MgCu2 rhombohedron 

Let us assume that  the acute rhombohedron  ( a  = 
63.43 °) of  the 3D Penrose tiling has a similar structure 
to the 3 D MgCu2 rhombohed ron  ( a  = 60 °) which has 

333 two atoms at ± ( ~ )  in addi t ion to those at the vertices 
and the centres of  edges. This acute rhombohedron  
can have 20 different orientations.  But one ha l f  of  
them are in the opposi te  direction to the other  half,  
so that  only ten independent  orientations exist. Let 
the basis vectors be qi, qj and qk, where the set i, j~ 
k may have the values 

(126), (236), (346), (456), (156), 

(124), (234), ( i34) ,  (7_54), (135). 

The coordinates  of  these 20 atoms inside the rhom- 
bohedron  are 

33 3 33 3 33 3 + ( o ~ ) ,  +(~o~), ±(~oo~), 

333 3 33 33 +(00~),  ±(~00~), ±(~00),  

33 3 ~ 33 3 33 ± ( ~ 0 ) ,  ±(~00),  ± ( ~ 0 ) ,  

3 7 3  ± ( ~ o ) .  

Together  with the a tom at the origin and six more 
atoms on the centres of  the edges with coordinates  
(2!00000)~, there are al together  27 atoms. Since the 
qi are the project ion of  bi, these 27 atoms can be 
considered as projected f rom a 6D unit cell. By pro- 
jecting such a 6D unit cell onto a 3D hyperplane ,  the 
atomic posit ions in the icosahedral  quasicrystal  can 
be obtained.  
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Abstract 

The Debye -Wal l e r  exponent  B and the Debye  tem- 
perature  O for n iobium have been determined at 
room tempera ture  by the elastic neutron diffraction 
method using a triple-axis neutron spectrometer.  The 
contr ibut ion of  TDS to the diffraction peaks  was 
found to be negligible. The value of  B thus found 
was 0.55 ( 5 ) A  2. The Debye  tempera ture  O was 

0108-7673/87/060795-03 $01.50 

262 (12)K.  The results are compared  with values 
obtained by other  techniques.  

Introduction 

From a diffraction exper iment  one could, in principle,  
obtain informat ion  about  lat t ice-dynamical  proper-  
ties such as the mean  square  displacement  of  an a tom 
and the Debye  tempera ture  of  the material .  
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In the present experiment, the powder neutron 
diffraction method has been employed and from the 
measurement of integrated intensities of several Bragg 
reflections of niobium, the Debye-Waller factor, the 
Debye temperature and the mean square amplitude 
have been determined. Similar measurements were 
carried out by Linkoaho (1971) using X-rays. Sharp 
(1969) and Powell, Martel & Woods (1977) deter- 
mined the Debye temperature of niobium from the 
measured phonon density of states using the inelastic 
neutron scattering technique and Grimvall & 
Grimvall (1968) determined the Debye temperature 
using the inelastic neutron scattering data of 
Nakagawa & Woods (1963). However, there is a 
considerable discrepancy among their results. Since 
no measurements are available using the neutron 
diffraction method we took up these experiments. 
These data are of interest to the IUCr project on the 
compilation of temperature factors for cubic elements 
(International Union of Crystallography, 1985). 

Theory 

The integrated intensity of a Bragg reflection depends 
on the specimen temperature through the Debye- 
Waller factor, exp ( - 2 M ) ,  which is related to the 
Debye-Waller parameter B by 

M = B (sin 2 0)/A 2, 

where 

B = 87r2u2/3. 

. 2 . . -  

Here u 2 is the mean square atomic displacement 
perpendicular to the reflecting plane, 0 is the Bragg 
angle and A is the wavelength of radiation employed. 

The Debye-Waller parameter B is obtained from 
the slope of the line given by 

In (Fo/Fc) = constant-  B(sin 2 0)/A 2, 

where Fo is the observed structure factor and Fc the 
calculated structure factor. 

In the Debye approximation 

B = (6h2/mk)( T/(92)[ q~(x) + x~ 4] 

where h is Planck's constant, k is Boltzmann's con- 
stant, m is the atomic mass, T is the temperature of 
measurement, (9 is the Debye temperature and ~o(x) 
is the Debye function where x = 19/T. 

Table 1. Observed and calculated structure factors and 
the TDS correction for Nb at room temperature 

h k l  F o F c T D S ( %  ) 

l lO 14.37 14-42 0.03 
200 14-43 14-07 0-08 
211 13.77 13.72 0.12 
220 13.39 13.39 0.17 
310 12.60 13.06 0.21 

Bragg intensities. (Beg, Aslam, Butt, Khan & 
Rolandson, 1974). Niobium powder (325 mesh, purity 
99.9%) was packed in a moisture-tight vanadium 
container. (220) planes of a copper single crystal were 
used as monochromator and (200) planes of a 
pyrolytic graphite crystal as the analyser. The neutron 
wavelength employed was 1.175 A. The Bragg peaks 
were scanned over a 20 range of 75 ° and counts were 
noted at angular intervals of 0"20 ° . Peak intensities 
were corrected for the background defined by the 
wings of the peak. All measurements were made at 
room temperature (298 K). 

The integrated intensities were corrected for ther- 
mal diffuse scattering (TDS) by the method described 
by Beg et al. (1974). The B value of niobium was 
computed by least-squares fitting of the data of five 
peaks. The TDS error varied from 0.03% for the 110 
reflection to 0.2% for the 310 reflection. The correc- 
tion to the B value due to TDS was thus found to be 
small and was within experimental errors. 

Results and discussion 

The least-squares fit to the experimental data yielded 
a value of B = 0.55 (5) ,~2 corresponding to a Debye 
temperature of 262 (12)K and a root mean square 
displacement of 0.145 (6) ,~. 

Table 1 contains the values of the observed and 
calculated structure factors. The discrepancy factor 
R was 1-3%, indicating good agreement between the 
observed and the calculated structure factors. 

In Table 2 the results of previous experimental and 
theoretical determinations of B values are summa- 
rized. In the present work using the powder neutron 
diffraction method, the value of B=0-55 (5)A~ 2 
agrees well with the previous X-ray and inelastic 
neutron scattering values which lie in the range 0.45 
to 0.53 ~2. The average B value determined from 
elastic-constant data is 0.54,~2, and the agreement 
between experimental and theoretical values is 
also good. The B value for Nb determined in the 
present experiment can be regarded as a reliable 
value. 

Experimental procedure 

A triple-axis neutron spectrometer was used in the 
elastic diffraction mode for the measurement of the 

The authors would like to thank the technical staff 
of the neutron diffraction group of PINSTECH, 
Islamabad for their help in the experiment. 
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B (/~2) 0 (K) 

0"53 270 
0-45 285 
0"50 279 
0.45 (2) 285 (5) 
0.45 (1) 284(6) 
0.52 (8) 260(20) 

0.56 260 
0.51 275 
0.56 256 
0.49 281 
0.55 (5) 262 (12) 

Table 2. Comparison of results for B values of Nb 

(u2) 1/2 (/~,) Method 

0-142 Inelastic neutron scattering data 
0.131 Inelastic neutron scattering data 
0.138 Inelastic neutron scattering data 
0-131 ( 1 ) X-ray powder diffraction 
0.134 (1) X-ray powder diffraction 
0.140 (40) X-ray powder diffraction 

(not corrected for TDS) 
0-146 Elastic constant data 
0.139 Elastic constant data 
0-146 Elastic constant data 
0"136 Theoretical (model calculations) 
0.145 (6) Elastic neutron powder diffraction 

Reference 

Grimvall & Grimvail (1968) 
Sharp (1969) 
Poweli, Martel & Woods (1977) 
Linkoaho & Rantavuori (1970) 
Linkoaho ( 1971 ) 
Korsunskii, Genkin & Vigdorchik (1977) 

Padyukha & Chernyi (1966) 
Jones, Moss & Rose (1969) 
Gololobov, Mager, Mezhevich & Pan (1983) 
Gupta (1985) 
Present work 
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Abstract 

Large starting sets of random phases are in general 
inconsistent with positivity and atomicity of the elec- 
tron density. A correct solution can be achieved from 
them because the tangent formula is a process which 
maximizes entropy under physical constraints involv- 
ing the positivity and atomicity of electron density. 
Starting sets which are themselves tendentially 
maximally entropical can be created by associating 
phase shifts A, generated according to the yon Mises 
distribution of each triplet phase, to some (from 50 
to 300) triplet invariants. Then the phases generated 
via these perturbed triplets are samples of the phase 
population expected to be maximally entropical on 

0108-7673/87/060797-06501.50 

the basis of the prior information. Experimental tests 
show that the method may be a useful alternative to 
other conventional multisolution methods. 

I. Introduction 

Multisolution direct-methods computer programs are 
today a powerful tool for solving structures contain- 
ing up to 70 or 80 atoms in the asymmetric unit. 
Various sets of phases, among which the correct so- 
lution is usually found, are produced by application 
of the tangent formula or similar techniques. The 
unknown phase values among the reflexions chosen 
to start the phase determination are usually represen- 
ted by a magic-integer sequence (White & Woolfson, 
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